Carbohydrates include the common sugar, sucrose (table sugar), a disaccharide, and such simple sugars as glucose (from the digestion of table sugar) and fructose (from fruit), and starches from sources such as cereal flour, rice, arrowroot, and potato. The interaction of heat and carbohydrate is complex. Long-chain sugars such as starch tend to break down into simpler sugars when cooked, while simple sugars can form syrups. If sugars are heated so that all water of crystallisation is driven off, then caramelization starts, with the sugar undergoing thermal decomposition with the formation of carbon, and other breakdown products producing caramel. Similarly, the heating of sugars and proteins elicits the Maillard reaction, a basic flavor-enhancing technique. An emulsion of starch with fat or water can, when gently heated, provide thickening to the dish being cooked. In European cooking, a mixture of butter and flour called a roux is used to thicken liquids to make stews or sauces. In Asian cooking, a similar effect is obtained from a mixture of rice or corn starch and water. These techniques rely on the properties of starches to create simpler mucilaginous saccharides during cooking, which causes the familiar thickening of sauces. This thickening will break down, however, under additional heat. Sucrose is the organic compound commonly known as table sugar and sometimes called saccharose. A white, odorless, crystalline powder with a sweet taste, it is best known for its nutritional role. The molecule is a disaccharide composed of the m

nosaccharides glucose and fructose with the molecular formula C12H22O11. The word was formed in mid-19th century from Latin sucrum = "sugar" and the chemical suffix -ose. In 2011, about 168 million tonnes of table sugar were produced world-wide. Glucose (/lu?ko?s/ or /-ko?z/; C6H12O6, also known as D-glucose, dextrose, or grape sugar) is a simple monosaccharide found in plants. It is one of the three dietary monosaccharides, along with fructose and galactose, that are absorbed directly into the bloodstream during digestion. An important carbohydrate in biology, cells use it as the primary source of energy and a metabolic intermediate. Glucose is one of the main products of photosynthesis and fuels for cellular respiration. Glucose exists in several different molecular structures, but all of these structures can be divided into two families of mirror-images (stereoisomers). Only one set of these isomers exists in nature, those derived from the "right-handed form" of glucose, denoted D-glucose. D-glucose is sometimes referred to as dextrose, although the use of this name is strongly discouraged. The term dextrose is derived from dextrorotatory glucose. This name is therefore confusing when applied to the enantiomer, which rotates light in the opposite direction. Starch and cellulose are polymers derived from the dehydration of D-glucose. The other stereoisomer, called L-glucose, is hardly ever found in nature. The name "glucose" comes from the Greek word glukus (), meaning "sweet". The suffix "-ose" denotes a sugar.